Combined as one! Further than Before: Pathway to the Stars, Parts 1 & 2 in an 8.3 x 11.7 inch novel of 400K words that hit the intellect in the best and most sophisticated ways,... through #scifi #fantasy #mustread #physics #theoreticalphysics #spaceopera #strongfemalelead #strongmalerolemodel #physiology #neuroscience #nanotechnology #longevity #CRISPR and more! Enjoy! https://www.instagram.com/p/BsP4HEpn5eV/?utm_source=ig_tumblr_share&igshid=14zfkolya34p6
Stars are giant, luminous spheres of plasma. There are billions of them — including our own sun — in the Milky Way Galaxy. And there are billions of galaxies in the universe. So far, we have learned that hundreds also have planets orbiting them.
All stars begin from clouds of cold molecular hydrogen that gravitationally collapse. As they cloud collapses, it fragments into many pieces that will go on to form individual stars. The material collects into a ball that continues to collapse under its own gravity until it can ignite nuclear fusion at its core. This initial gas was formed during the Big Bang, and is always about 74% hydrogen and 25% helium. Over time, stars convert some of their hydrogen into helium. That’s why our Sun’s ratio is more like 70% hydrogen and 29% helium. But all stars start out with ¾ hydrogen and ¼ helium, with other trace elements.
If you could collect all the stars together and put them in piles, the biggest pile, by far, would be the red dwarfs. These are stars with less than 50% the mass of the Sun. Red dwarfs can even be as small as 7.5% the mass of the Sun. Below that point, the star doesn’t have the gravitational pressure to raise the temperature inside its core to begin nuclear fusion. Those are called brown dwarfs, or failed stars. Red dwarfs burn with less than 1/10,000th the energy of the Sun, and can sip away at their fuel for 10 trillion years before running out of hydrogen.
The color of stars can range from red to white to blue. Red is the coolest color; that’s a star with less than 3,500 Kelvin. Stars like our Sun are yellowish white and average around 6,000 Kelvin. The hottest stars are blue, which corresponds to surface temperatures above 12,000 Kelvin. So the temperature and color of a star are connected. Mass defines the temperature of a star. The more mass you have, the larger the star’s core is going to be, and the more nuclear fusion can be done at its core. This means that more energy reaches the surface of the star and increases its temperature. There’s a tricky exception to this: red giants. A typical red giant star can have the mass of our Sun, and would have been a white star all of its life. But as it nears the end of its life it increases in luminosity by a factor of 1000, and so it seems abnormally bright. But a blue giant star is just big, massive and hot.
It might look like all the stars are out there, all by themselves, but many come in pairs. These are binary stars, where two stars orbit a common center of gravity. And there are other systems out there with 3, 4 and even more stars. Just think of the beautiful sunrises you’d experience waking up on a world with 4 stars around it.
Speaking of red giants, or in this case, red supergiants, there are some monster stars out there that really make our Sun look small. A familiar red supergiant is the star Betelgeuse in the constellation Orion. It has about 20 times the mass of the Sun, but it’s 1,000 times larger. But that’s nothing. The largest known star is the monster UY Scuti. It is a current and leading candidate for being the largest known star by radius and is also one of the most luminous of its kind. It has an estimated radius of 1,708 solar radii (1.188×109 kilometres; 7.94 astronomical units); thus a volume nearly 5 billion times that of the Sun.
Quick, how many stars are there in the Milky Way. You might be surprised to know that there are 200-400 billion stars in our galaxy. Each one is a separate island in space, perhaps with planets, and some may even have life.
Okay, this one you should know, but it’s pretty amazing to think that our own Sun, located a mere 150 million km away is average example of all the stars in the Universe. Our own Sun is classified as a G2 yellow dwarf star in the main sequence phase of its life. The Sun has been happily converting hydrogen into helium at its core for 4.5 billion years, and will likely continue doing so for another 7+ billion years. When the Sun runs out of fuel, it will become a red giant, bloating up many times its current size. As it expands, the Sun will consume Mercury, Venus and probably even Earth.
Small stars like red dwarfs can live for trillions of years. But hypergiant stars, die early, because they burn their fuel quickly and become supernovae. On average, they live only a few tens of millions of years or less.
Brown dwarfs are substellar objects that occupy the mass range between the heaviest gas giant planets and the lightest stars, of approximately 13 to 75–80 Jupiter masses (MJ). Below this range are the sub-brown dwarfs, and above it are the lightest red dwarfs (M9 V). Unlike the stars in the main-sequence, brown dwarfs are not massive enough to sustain nuclear fusion of ordinary hydrogen (1H) to helium in their cores.
Sirius is a star system and the brightest star in the Earth’s night sky. With a visual apparent magnitude of −1.46, it is almost twice as bright as Canopus, the next brightest star. The system has the Bayer designation Alpha Canis Majoris (α CMa). What the naked eye perceives as a single star is a binary star system, consisting of a white main-sequence star of spectral type A0 or A1, termed Sirius A, and a faint white dwarf companion of spectral type DA2, called Sirius B.
To know more click the links: white dwarf, supernova, +stars, pulsars
sources: wikipedia and universetoday.com
image credits: NASA/JPL, Morgan Keenan, ESO, Philip Park / CC BY-SA 3.0
That's beautiful! :)
Milky way over Mount Hood from Laurence Lake, Oregon
I was curious about a closeup of Saturn's rings... nice!
One of NASA’s greatest spacecraft will call it quits on September 15, 2017. The Cassini spacecraft has made countless discoveries during its sojourn to Saturn and its surrounding moons. It has also sent back nearly 400,000 images, many of which are purely spectacular, with surely more to come during the final months of the mission as Cassini explores new territory between Saturn and its rings.
In honor of the brave spacecraft, we spent hours sifting through the deluge of images to highlight some of Cassini’s best views from Saturn.
See all 52 ~ Popular Science
Image credits: NASA
“[The Event Horizon Telescope] uses VLBI. So what is interferometry and how was it employed by [the Event Horizon Telescope]? Seems like it was a key ingredient in producing the image of M87 but I have no idea how or why. Care to elucidate?”
If it were easy to network radio telescopes together across the world, we’d have produced an image of a black hole’s event horizon long ago. Well, it’s not easy at all, but it is at least possible! The technique that enabled it is known as VLBI: very-long-baseline interferometry. But there are some critical steps that aren’t very obvious that need to happen in order for this method to succeed. Remarkably, we learned how to do it and have successfully employed it, and the Event Horizon Telescope marks the first time we’ve ever been able to get an image with a telescope that’s effectively the size of planet Earth!
Come get the incredible science behind how the technique of VLBI enabled the Event Horizon Telescope to construct the first-ever image of a black hole’s event horizon!
What a nice vantage point :)
The Milky Way seen from a sea cave in Malibu, California
source
Enjoy this First-Year-Anniversary compilation of all of my works in one title: A Cosmic Legacy: From Earth to the Stars This title includes the following works wrapped up into one story: Further Than Before: Pathway to the Stars, Part 1 Further Than Before: Pathway to the Stars, Part 2 Pathway to the Stars: Part 1, Vesha Celeste Pathway to the Stars: Part 2, Eliza Williams Pathway to the Stars: Part 3, James Cooper Pathway to the Stars: Part 4, Universal Party Pathway to the Stars: Part 5, Amber Blythe Pathway to the Stars: Part 6, Erin Carter "Our beautiful mother world ached for a reprieve from the injustices of many, courtesy of cultures and governance systems, that forgot how to love, how to be kind, how to include others, and how to think beyond the scope of greed and power, but within the visions of shared joy and well-being." Together with the organization Eliza Williams founded, called Pathway, she and her growing team will take us on a fantastical and Utopian journey to get us out and into the farthest reaches of space. There are dilemmas such as the physiological effects of space on each of us, as well as the need for longevity and a desire to still be able to visit loved ones following long journeys. Eliza and her team develop capabilities, so we can overcome the challenges ahead and are determined to stabilize a rocky economy, wipe away suffering, violence, disease, cartels, terrorism, and trafficking in persons. They work together to tame seismic activity, weather, and fires. She and her friends tackle ways to prevent extinction and provide solutions to quality of life concerns. They even consider the longevity of our Sun and our Earth's capacity to preserve life. Eliza tackles each of these issues to get us out, and into the stars, so we can begin our biggest quest--to help our Universe breathe ever so lightly. #amazing #science #fiction #novels #best #new #books #scifi #online #read #longevity #CRISPR #physiology #neurology #physics #theoretical #philosphical #politcal #educational #STEM #AmazonAuthor #BarnesAndNobleAuthor #wellbeing #quality #biotech #nanotech #SpaceOpera #astronomy #selfpublished https://www.instagram.com/p/B2GkDbYBs0y/?igshid=ufavr7j6lsy1
@shanrel @delosveronesi @woodbscinpsy-blog @sonictantra @akatsuki-deidara-katsu
ok
Please enjoy
Matthew Opdyke @ Author Central
http://www.amazon.com/dp/0578430436
View On WordPress
“Above a certain mass, the atoms inside large planets will begin to compress so severely that adding more mass will actually shrink your planet. This happens in our Solar System, explaining why Jupiter is three times Saturn’s mass, but only 20% physically larger. But many solar systems have planets made out of much lighter elements, without large, rocky cores inside.”
You might think that Jupiter is the largest planet in the Solar System because it’s the most massive, but that’s not quite right. If you kept adding mass to Saturn, it would get larger in size, but if you kept adding mass to Jupiter, it would shrink! For a given set of elements that your planet is made out of, there’s a maximum size it can reach, that’s somewhere in between the mass of Saturn and Jupiter in general. Our Solar System is on the dense side of things, meaning that we’ve discovered a large number of exoplanets out there that are approximately twice the physical size of Jupiter without becoming brown dwarfs or hydrogen-fusing stars. For worlds like WASP-17b, where we’ve measured both the radius and mass, we find that they’re only about half the mass of Jupiter, despite being double the size.
Come get the full scientific story, and some very informative and illustrative images with no more than 200 words, on today’s Mostly Mute Monday!
(NASA) Unexpected X-Rays from Perseus Galaxy Cluster
Image Credit: X-ray: NASA/CXO/Oxford University/J. Conlon et al.; Radio: NRAO/AUI/NSF/Univ. of Montreal/Gendron-Marsolais et al.; Optical: NASA/ESA/IoA/A. Fabian et al.; DSS
Why does the Perseus galaxy cluster shine so strangely in one specific color of X-rays? No one is sure, but a much-debated hypothesis holds that these X-rays are a clue to the long-sought identity of dark matter. At the center of this mystery is a 3.5 Kilo-electronvolt (KeV) X-ray color that appears to glow excessively only when regions well outside the cluster center are observed, whereas the area directly surrounding a likely central supermassive black hole is actually deficient in 3.5 KeV X-rays. One proposed resolution – quite controversial – is that something never seen before might be present: florescent dark matter (FDM). This form of particle dark matter might be able to absorb 3.5 KeV X-radiation. If operating, FDM, after absorption, might later emit these X-rays from all over the cluster, creating an emission line. However, when seen superposed in front of the central region surrounding the black hole, FDM’s absorption would be more prominent, creating an absorption line. Pictured, a composite image of the Perseus galaxy cluster shows visible and radio light in red, and X-ray light from the Earth-orbiting Chandra Observatory in blue.
Source